If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+80x=-62
We move all terms to the left:
25x^2+80x-(-62)=0
We add all the numbers together, and all the variables
25x^2+80x+62=0
a = 25; b = 80; c = +62;
Δ = b2-4ac
Δ = 802-4·25·62
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-10\sqrt{2}}{2*25}=\frac{-80-10\sqrt{2}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+10\sqrt{2}}{2*25}=\frac{-80+10\sqrt{2}}{50} $
| -9+5x=13 | | -4.8x-2.7=-1.9 | | -0.7+0.5+1.2x=0.5+0.8 | | -10-7x=74 | | W+1/7=6w-1 | | 4–2u=2 | | x-2(x=10)=12 | | .16x=6.7 | | f4– 2= 2 | | 0.7x=-2.3x-2.8 | | -3c+-13=2 | | x^281=0 | | x=55-(55÷.15) | | 492=0.0082x | | 92=6x+4 | | 4x+x=3x+3+2x | | 2x3-12x2+18x=0 | | 6x2+12x−5=0 | | 1/2(6x+8)-x=2x+8 | | –4d+2(3+d)=–14 | | 5x-5/3=5(x-4) | | 2x(x^2-6x+9)=0 | | 5(2x-4)=13-23 | | 18=0.0075x. | | 2x+4+x=2x-3+x | | 5x=2x+51 | | 8(1+3v)+v=-142 | | 65-3n=335 | | (55÷.15)+x=55 | | 6x-2+4x-1=-3+10x | | -((44)(225))/(10)+15+6=v^2 | | 5b+6=-94 |